fbpx

NOUS

NOUS

Ongoing

Abstract

NOUS will develop the architecture of a European Cloud Service that allows computational and data storage resources to be used from edge devices as well as supercomputers, through the HPC network, and Quantum Computers. NOUS will be an Infrastructure-as-a-Service (IaaS)/Platform-as-a-Service (PaaS) cloud provider, harnessing edge computing and decentralisation paradigms to incorporate a wide array of devices and machines in its computational flow to provide leaps in Europe’s capability to process vast amounts of data. The pipeline of the NOUS in the project will include three types of components: i) computational components that are responsible for executing computations, ii) edge components that are responsible for communicating with edge devices (such as IoT sensors/ actuators/ devices), iii) data storage components that are responsible for data storage and storage management. Components are researched individually, expecting to yield breakthroughs, and jointly, to create the architecture and cloud-level services such as syndication with other platforms and virtual labs. The project has defined 4 use-cases that will allow the testing of the developed technologies in real-world scenarios that industry leaders face. The NOUS architecture will be made open source to allow the capitalization by companies and organisations. Furthermore, a set of workshops and collaboration activities is envisioned with Data Spaces Support Centre, Gaia-X, FIWARE and EOSC powered by a strong consortium of 21 partners from 11 European countries.

Role of AETHON

AETHON will have a significant role in the project by leading Work Package 6: ‘Towards the creation of the NOUS architecture’. Furthermore, AETHON will lead the T2.2 task which comprises of the requirements elicitation and prioritisation for the NOUS architecture and NOUS components. AETHON will also create an Auto-Standardiser tool for translation to data standards within T5.4 and will deliver a Virtual Lab for data collaboration within T6.4. Finally, AETHON will also overview all the data related activities as an assigned Data Protection Officer.

Partners

Public Results

Public Deliverables:

  • D1.3 Data Management Plan – View pdf

Project Information

Duration: 1/1/2024 to 31/12/2026 (36 months)

Budget: €8,428,875.00

Project link: https://nous-project.eu/

HS4U

HS4U

Ongoing

Abstract

The overall objective of the HS4U project is to offer an evidence-based approach extending standardized design and regulatory paradigms towards industry 5.0. The project is promoting principles of modularization, optimization, and smart systems engineering towards the detection, prevention, mitigation and management of large passenger and cruise ships. Hence, HS4U holistic solutions for stress relief over conditions of health crises prioritize the assessment of typical cruise designs and day-to-day tasks. Following its two use cases (CELESTYAL and COLUMBIA BLUE), and its 4U(nique) pillars approach for research, i.e., societal/human, environmental, technological, legislation factors, it adopts and delivers state-of the art ecosystem of technologies offering groundwork to rethink health and safety designs and frameworks. HS4U bridges cross-sectorial multidisciplinary expertise to cross-fertilize research findings and provide best practices, protocol/ policy recommendation and a complete solution for crew training based on multi-player gaming. Validation of proposed technology and passenger behavioral model will be based on live experiments. Special HS4Us open source/FAIR offerings are:

  • Collaborative digital framework (CDF) for live interaction of crew/passengers and IoT edge devices on the ship based on co-robotics concepts and Artificial Intelligence mechanisms and models.
  • Viral Detection Sensor (VDS) that will be developed, tested, validated, delivered, patented and commercialized to offer online indication of the location of pathogenic airborne spreads in indoor environments.
  • “Robot-cabin” real-life demonstrator displaying evidence-based 4U solutions on the interoperability of smart, and innovative methods for ship systems effective and fast detection, prevention, mitigation and inter-compartment, intercompartment management ensuring healthy ship operations and safe return to port over conditions of health crises.

Role of AETHON

AETHON will have a significant role in the project by leading Work Package 3: ‘Technical and Technological Research’. Furthermore, AETHON will lead the research and development of a passenger behavioral model, due to its specialization in the transport field and data analysis. AETHON will also overview all the data related activities as an assigned Data Protection Officer.

Partners

Tsikis Shipyard

Project Information

Duration: 1/9/2022 to 31/8/2026 (36 months)

Budget: €6,255,977.50

Project link: https://hs4u.eu/

Cargo Bikes and Drones

Cargo bikes and Drones

Completed

Abstract

The proposed project refers to a first phase of importing drone and cargo bike into freight transport to meet some distinct needs, either in terms of transport speed or protection of some protected, sensitive environmental parts of the city. It is almost certain that at a later stage, when their technology has evolved, drone and cargo bike will be used to meet more conventional transportation needs because they will be able to carry more weight and thus serve more concentrated missions. Then, the transit centers will be the first intermediate destination in the transport chain until the final recipient. Conversely, in the first phase of light, therefore more personalized transport, small take-off / landing bases could operate, where the transfer between drone and cargo bike would take place. These bases will be on line with the transit center. The project aims to:

(a) investigate issues arising from the use of drones and bicycles in freight transport in urban places with various urban and traffic characteristics,

(b) produce a model that calculates cost, energy consumption and travel times using these means of transport per kilometer under different conditions,

(c) create a software that will include data on the location of take-off / landing points, sender and receiver addresses and landline characteristics.

Role of AETHON

AETHON will have a significant role in the technical tasks of the project due to its specialization in the design and implementation of innovative solutions aimed at modernising and improving transport services. AETHON will explore the circumstances under which freight transport with drones and cargo bikes is feasible and will contribute to the design and development of the platform.

Partners

Project Information

Duration: 17/6/2021 έως 16/12/2023 (30 months)

Budget: €932,818.00

Athena

Athena

Completed

Abstract

ATHENA is a garage project of AETHON aimed at reinventing the way we interact and communicate with our vehicle. In today’s non-automated vehicles, the interaction is simple, press the pedal – it accelerates, turn the wheel – it turns. But what happens in the vehicle of tomorrow, when automation gives your hands the opportunity to wander off and do something else besides grabbing the wheel?

It is simple, one might say, if something happens or I want the car to stop, I regain control simply by grabbing the wheel. That is true, it is possible, but there can be multiple unforeseen problems:

  • Drivers of automated vehicles regain control in a consistent and stabilized manor after around 40 sec (Merat et al., 2014)
  • Another study showed that drivers can take from 2 to more than 25 seconds to regain control, which is a significant time frame especially at high speed. Also, researchers noted that “Significantly longer control transition times were found between driving with and without secondary tasks” (Eriksson & Stanton, 2017)

 

This is only the tip of the iceberg. Automated cars are only starting to appear. In full automation we would not need to take control; vehicles got it covered for us. But then, what is the necessity for having a wheel? How will we communicate with the vehicle?

The Society for Automotive Engineers has developed a standard of 5 automation levels. Level 0 is no automation while level 5 is complete automation. This standard, also adopted by NHTSA (National Highway Traffic Safety Administration, USA – https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety), states that at level 4 and level 5, driver intervention becomes optional. This means that drivers will cease to exist, no wheel or formal driving training will be required. However, interaction between the “passenger” and the vehicle, cannot cease to exist. We need to tell our car where to go and how to get there, make stops if necessary or if we wish to. We should not only be talking about smart and autonomous vehicles but also for informed and empowered operators that will replace the driver concept. Athena aims to empower those operators with voice control.

Athena Concept

Voice control will help us communicate “natural commands”, such as, make a stop after the blue car, and will help us maneuver under various conditions, translating our voice commands to vehicle movement and control. Athena is an AI that makes the translation: it receives the command from the driver and transmits it to the automated vehicle’s system. It does not blindly make a left when the driver requests it, but lets the vehicle know that the driver wants to make a left, leaving the car to decide when its safe. This is a new level of vehicle-machine interaction, a new Human-Machine Interface. It also learns about us as we speak, using Machine Learning and Natural Language Recognition for understanding and improving the commands. Most importantly though, Athena translates those commands to valid vehicle movement, understands complicated maneuvers and requests the vehicle to perform them ensuring that the driver does not become a passenger but an operator, empowering and reinventing the interface of future vehicles.

Short Demo

The automated vehicle is depicted with a red dot. At the end (right side) of the middle lane there is a segment of very low speed limit (~5km/h). “Human” vehicles (in green) choose to change lane to avoid the segment but the automated vehicle will not change lane without a human giving the command. The demo aims to show how Athena will operate in a simple yet relevant example.

* Simulation software provided by Technical University of Delft (http://homepage.tudelft.nl/05a3n/)
** Voice transcription (Speech-to-Text) is powered by Watson, IBM (https://www.ibm.com/watson/)
*** Automated vehicles’ movement: Longitudinal driving model by Papacharalampous et al. (2015)

Tourism on Bicycle (TOPOs)

Tourism on Bicycle (TOPOs)

Completed

Abstract

A major problem of tourism in Greece is seasonality. The tourist product that is mainly offered is “sun and sea”. Organized mass tourism usually neglects history and civilization, a matter that makes the strategic search for alternative touristic activities that are attractive throughout the year, a crucial task. Such a form of tourism is cycling tourism that is in high demand by European tourists.

To enhance cycling tourism, the proposal of TOPOs aims at creating a) a certification system for touristic companies with respect to the friendliness of their services for bicyclists and b) an interactive online cycling tourism guide for promoting certified businesses. The evaluation of companies for receiving the certification will focus on the companies’ ability to provide bicyclists with required services. The online cycling tourism guide will provide information about the certified businesses, the surrounding areas and information concerning the difficulty, safety and scenery of the bike routes that connect the certified businesses and points of interest, thus delivering a new promotion tool for the companies.

The project includes a scientific research part which will focus on the definition of the criteria to be considered when assessing business to receive the certification and for the route assessment and a technological – commercial part that concerns the development of the product that will focus on user – friendliness and commercialization.

Role of AETHON

AETHON is the coordinator of the project. Furthermore, AETHON is executing technical tasks related with the technologies that will be developed during the project such as the certification platform and pilot execution.

Partner

Project Information

Project ID: Τ1ΕΔΚ-04981

Duration23/7/2018 to 3/11/2021 (39 months – Approved on 23/7/2018)

Budget: €282,398.00

This project was implemented in the context of the action RESEARCH-CREATE-INNOVATE which is managed by the Greek Government Administration MIA-RTDI , a special service under the General Secretary of the Centre of Research and Technology. The action and this project have been co-financed by the European Regional Development Fund (ERDF) of the European Union and national resources through the Competitiveness, Entrepreneurship & Innovation Operational Program (EPANEK). MIA-RTDI acts as a Intermediary Agency of EPANEK.

MoveWise-Research (MW-R)

MoveWise-Research (MW-R)

Completed

Abstract

This proposal for the project MoveWise-Research (MW-R) is submitted for the call INNOSUP-02-2016 “SME Innovation Associate”. AETHON requests to hire a post-doctoral researcher with sufficient academic experience on transportation engineering, data analytics, behavioural analysis and IT programming for the purpose of performing a proof-of-concept research (TRL 5 – development of model/algorithm) on modelling tours incorporating user feedback. The key objective of the MW-R project is to develop a model/algorithm for planning of tours and trips in real time incorporating user preferences and data on traffic obtained from public (and open) sources. The model will be created by using data from public transport authorities in Greece and by performing a small scale survey to obtain user feedback on trips. By achieving the MW-R goal, the model will be able to change the perspective of travellers by providing targeted information about planned routes that will improve mode, route, time of departure and destination choice. AETHON aims to incorporate the model in a smartphone application and to gain knowledge on transportation behavioural analysis that can be used in multiple professional activities.

Role of AETHON

AETHON is the coordinator of the project.

Project Information

Duration: 29/9/2017 to 28/9/2018 (12 months)

Budget: €64,243.8

Project linkhttp://cordis.europa.eu/project/rcn/208828_en.html

Public Results

Public Deliverables:

Open Publications:

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 739607.

My TRAvel Companion (My-TRAC)

My TRAvel Companion (My-TRAC)

Completed

Abstract

My-TRAC project aims to deliver an innovative application for seamless transport and an ecosystem of models and algorithms for Public Transport – PT user choice simulation, data analytics and affective computing. My-TRAC stands out from other technologies due to three main reasons. First, My-TRAC fosters unprecedented involvement of users during, before and after a trip through a smart Human-Machine interface and numerous functionalities such as crowdsourcing, group recommendations, data exchange. Second, the application implements a vast array of technologies, such as affective computing, Artificial Intelligence and user choice simulation, that fuse expertise from multiple fields. Third, My-TRAC facilitates engagement of multiple stakeholders by seamlessly integrating services and creating connections between Rail operators, Mobility-as-a-Service and other PT providers.

My-TRAC application is a travel companion designed to operate similarly to a human companion; understanding traveller’s attributes and state-of-mind to derive conclusions from vague information as any human does. In addition, My-TRAC will be the traveller’s gateway to various services related to using PT, having Rail in the epicentre. My-TRAC application will also provide predictive information concerning disruptions and disturbances. It will not only display data but analyse them through innovative algorithms to provide improved recommendations.

My-TRAC also involves PT operators through the “operators’ interface” where they can retrieve and visualize aggregated data on users’ movements and state-of-mind that will assist in strategic and dynamic operations. Data that the operators retrieve are aggregated and anonymized while all models and algorithms are applied on the mobile device of the user, seamlessly integrating the “privacy-by-design” concept.

The consortium will test the idea in 4 pilot locations with the cooperation of local operators: NS (NL), ATTIKO Metro (GR), FGC (SP), Fertagus (PT).

AETHON is the initiator of the My-TRAC project idea.

Role of AETHON

AETHON is leading technical tasks related to user-centric technologies of the My-TRAC application. AETHON performs multiple tasks related to behavioural analytics of passengers and participates actively in the data collection processes (design and implementation of questionnaire survey, analysis of mobility patterns etc.). Furthermore, AETHON works on the development of the My-TRAC smartphone application and is leading the development of the “operator’s interface”. Finally, AETHON participates in pilot’s design and execution in 4 countries: Greece, the Netherlands, Spain and Portugal.

Partners

Project Information

Duration: 1/9/2017 to 31/8/2020 (36 months)

Budget: €3,494,476.25

Project linkhttp://www.my-trac.eu/ (Project website), http://cordis.europa.eu/project/rcn/211972_en.html (Publication in CORDIS)

Skip to content